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Explicit formulae a~e derived which express, for molecules consisting of a rigid core to which side 
groups that are free to librate around a single bond are attached, the second and third cumulants of the 
scattering density function as functions of molecular translation and libration parameters. These 
formulae and their derivatives with respect to the molecular motion parameters have been incorporated 
into a least-squares refinement program which determines directly the values of the position and thermal- 
motion parameters which give the best fit to the observed data. 

Introduction 

It was originally pointed out by Cruickshank (1956), 
that molecular librations cause a systematic displace- 
ment of the maxima of scattering density away from 
the actual equilibrium positions of atoms in the mol- 
ecule. Cruickshank (1961) also pointed out that in the 
case of anisotropic librations the nature of these dis- 
placements can be very complex. More recently, Scho- 
maker & Trueblood (1968) analyzed the motions of" 
rigid molecules in terms of translations, librations, and 
screw motions. These are represented by three tensors, 
designated T, L, and S, whose values may be deter- 
mined by a least-squares fit to the anisotropic thermal 
parameters resulting from a conventional crystal struc- 
ture refinement. Johnson (1970a) extended this analysis 
to segmented rigid bodies, in which portions of mol- 
ecules are relatively rigid but are connected together by 
single bonds, allowing two or more segments to rotate 

with respect to one another about the direction of the 
bond. 

Willis & Pawley (1970), Pawley & Willis (1970), and 
Pawley (1970) have discussed various aspects of the 
problem of relating the structure factor formula directly 
to molecular motion parameters, and thereby con- 
straining the thermal parameters in a refinement to fit 
a physical model. Johnson (1969, 1970b) has described 
a procedure, applicable to centrosymmetric rigid mol- 
ecules, for relating the second and third cumulant co- 
efficients in the structure-factor formula to the molec- 
ular motion parameters. 

This paper extends Johnson's treatment to molecules 
consisting of a rigid core and one or more attached side 
groups which are free to librate around a single bond. 
The resulting formulae have been incorporated into a 
least-squares program using thermal constraints. No 
a priori assumptions are made about the configuration 
of the molecule, but thermal parameters are con- 



180 C O N S T R A I N T S  ON T H E R M A L  M O T I O N  IN  S T R U C T U R E  R E F I N E M E N T  

strained to conform to the segmented rigid-body model. 
The following paper (Prince, Schroeder & Rush, 1973) 
describes the application of this program to a neutron- 
diffraction refinement of  the crystal structure of durene. 

Mathematical analysis 

Consider a molecule occupying a position in a crystal 
such that  the molecule is fixed by a center of symmetry.  
The molecule has a rigid core which includes an a tom 
with an equilibrium position defined by the vector ra. 
An a tom with equilibrium position rb is at tached by a 
single bond to the a tom at ra. A third atom, with equi- 
l ibrium position r and bonded to the a tom at r~, is part  
of  a rigid side group which can librate around the 
vector rb-ra (see Fig. 1). We shall assume that  most of 
the motion of  the a tom at rb can be accounted for by 
motion of  the core of the molecule, and that  the part  
of its motion due to bending of the single bond can be 
neglected. The displacement, w, of the a tom at r is the 
resultant of a displacement u due to the rotational dis- 
placement of the molecule as a whole and a displace- 
ment  v due to rotation about  the vector rb-ra. 

In evaluating these vectors we shall follow the treat- 
ment  given by Johnson (1970b) which is essentially 
equivalent to that  of Schomaker  & Trueblood (1968). 
According to Euler's theorem any motion of a rigid 
body possessing a fixed point can be represented by a 
finite rotat ion about  some axis passing through the 
fixed point. We can therefore describe the instantaneous 
displacement of the molecule from its equilibrium posi- 
tion by means of an axial vector ~., with components  
22, 2z, and ;t3 (referred to an or thonormal  coordinate 
system) and magnitude 2, equal to (22+ 222 + ~2)1/2, the 
angular rotation, in radians, a round the direction ~.. 
For  any finite rotation the displacement, u, of  a point  
whose equilibrium position is r is given by 

n =  (sin 2/2) (~,Ar)+ [(1--COS 2)/22] [~.^(~.^r)], (1) 

where ^ indicates vector product.  Let us define a vector 
r ' =  rb - r a .  The change, u', in r '  due to rigid-body rota- 
tion can be expressed simply by substituting r '  for r in 
equation 1. Let us define another  vector r"  = r -  rb. The 
displacement v can then be expressed by a rotation of  
r"  through an angle 0 about  the vector r '  +u ' .  Noting 
that,  in a rigid body, I f + i f [  = Ir'l, we define a vector 0 
by 0 =  0 ( r '+  u')/r ' ,  and then, by analogy with equation 
1 we can express v by 

v =  (sin 0/0)[0^(r" + u")] 

+ [ ( l - c o s  0)/02]{0^[0^(r ' ' + u ' ' ) ] } .  (2) 

If  we make the approximations 

sin 2/2 ~ 1 - 22/6, (3a) 
and 

(1-cos) . ) / ) .2  _~ ½ -  22/24, (3b) 

equation (1) becomes 

u-~(1-22 /6)  Q,^r) + (½-  22/24)[~,^(~.^r)], (4) 

Fig. 1. Diagram showing the displacement, w, of a side-group 
atom whose equilibrium position is r due to a rigid-body 
rotation combined with a rotation about the bond joining 
two other atoms whose equilibrium positions are r~ and r,. 

and we can express the ith component  of n as 
3 3 3 

u,__ ~ {A(r),s2s + ~. [B(r),sk2S2k + ~(C(r),skZ2S2k2t 
j=! k=l  I=1 

3 

-1- ~ D(r)ijklm)~j~.k~.l)~m)]} , (5) 
m=l 

where A, B, C, and D represent the coefficients of  the 
corresponding terms in equation 4. These coefficients 
are linear functions of the components  of r, and are 
listed in Table 1. 

Table 1. The values o f  the coefficients A(r)~s, B(r)~Sk , 
C(r)~skz, and O(r)~skZm 

In each case if k <j, l< k or m < l the value of the correspond- 
ing coefficient is zero. 

A(r) 
i ~ j  1 2 3 

1 0 r3 - r2 
2 - ra 0 r~ 

3 r2 - r~ 0 

B(r) 
i ~ j k  11 12 13 

1 0 ½re ½ra 
2 -½r2 ½rl 0 
3 -½r3 0 ½r~ 

22 23 33 
-½ra 0 -½rl 

0 ½r3 -½rz 
-½r3 ½r2 0 
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C(r) 
i~ jk l  111 112 113 122 

1 0 -z6k6t r3 -~r2 0 
2 -~;r3 0 ~-rt -~ra 
3 -V~Xr2 acrt 0 -v~o~ r2 

D(r) 
i~]klm 1111 1112  1113 1122 

1 0 - t  -~ -i-xr2 5xr3 ~ r t  
2 ~ . r2  ~-~r~ 0 ~ . r2  
3 ~ r 3  0 ~ r l  x-L~r3 

Table 1 (cont.) 

123 133 222 223 233 333 
0 0 -7~r~ ~r2 Y-~6~ r~ ~rr2 
0 ~r~ 0 -7~ r~ 0 ~-~ r~ 
0 -7~ r2 ~r~ 0 ~r~ 0 

1123 1133 1222  1223 1233 1333 
0 - ~ r l  -~ -1 - I  .~4r3 -~r2 -~r3 5xr2 
-~r3-I ~-~r2 ~-~.r~ 0 ~.rt 0 
- 1  5xr2 2~r3 0 - t  0 - t  -~r t  -~r t  

2222 2223  2233  2333  3333 
~r~ 0 ' 0 ' T~rt  ~-~rt 
0 --1 I --I ~-~ra ~-~r2 ~-~r3 2--~r2 
2-~ra - ~ r ~-~ 2 ~ . r a  ~-~ r2 0 

Let us define two more vectors R = r ' ^ r "  and R ' =  
r'^R. These vectors transform under rigid-body rota- 
tions to R + U and R ' +  U' respectively. Because rigid- 
body rotations preserve all distances and angles, the 
vector R + U is perpendicular to r' + u' and r" + u", 
and, using the definition of 0, is in fact equal to 
(r'/O)[O^(r" +u")]. Similarly R ' +  U'=(r'/O)2{O^2[OA(r '' 
+ u")]}. Therefore, using equation 5 and retaining terms 
up to the fourth degree in angular displacements, 

3 

[0^(r" + u")], = (O/r'){R, + ~ [A(R)~j2j 
j = l  

3 3 

+ ~ (B(R),~2fl~k + ~ C(R),~,t2~2,2,11}, (6a) 
k = l  1=1 

and 
3 

{0^[0^(r" +u"l]},=(O/r'lZ[Ri + ~ (A(R'I,j2~ 
j = l  

3 

+ ~ B(R'),~k2fl~k)]. (6b) 
k = l  

Making the approximations of equation (3) we obtain 

v~ = ORffr' + 02R'ff2r '2 - 03Rff6r ' -  OaRi/24r '2 
3 

+ ~. {A(R)~i2jO/r'-A(R)~j2jO3/6r'+A(R')~fl~j02/2r'2 
j = l  

3 

+ E [B(R)~jk2j2kO/r' + B(R')~jk2j2kO2/2r '2 
k = l  

3 

+ ~ C(R),jk,2j2k2,0/r']}. (7) 
1=1 

The total displacement of the atom from its equilibrium 
position is w = u  + v. The first, second, and third mo- 
ments of the distribution of w with respect to the 
equilibrium position are defined by 

and 

(8a) 
(8b) 

(8c) 3a j = (wlwjw ) 
where the angle brackets indicate a time average. 

In order to evaluate these quantities we make the 
following definitions: 

L~j -  (2~2s) (9a) 

o- (02) .  (9b) 
If we assume that the variables 2t and O have a Gaus- 
sian distribution with zero mean, we can employ the 
following relations (Johnson, 1970b)" 

- L~gLkz + LikLsl + LuLsk, (10a) 

(022,2j) = 6)L,j , (10b) 

(04) = 30  2, (10C) 

(02 , )=0  . (lOd) 

We are implicitly assuming here that the libration of 
the side group is uncorrelated with the libration of the 
core molecule. We shall also assume 

(O)=(03)=(2 , )=(2 ,2 f l . k )=(Oz2 , )=(02 ,2 , )=O.  (10e) 

If the center of mass of the molecule is displaced from 
its equilibrium position by the vector t, and we define 
the translation tensor, T~j, by T~j- ( tdj) ,  the first three 
cumulants are given by the relations (Johnson, 1969; 
Kubo, 1962) 

bq = ri + l p ~ ,  (1 la) 

2x o = T~j + 2/~j_ lp lp j ,  (11 b) 

3 1 , 2 ,  1, 2, (11c) 3tfijk ~ ] ' l i j k -  txi l ' * j k -  txj t X l k -  l['lk2]Lllj , 

and the structure factor, F(h) is given by (Johnson, 
1970b), 

3 

F(h)= Z f(h){exp 2~ri ~. ltcjhj 
atoms j =  1 
in cell 

3 
+[(2zri)2/2!] ~ 21¢jkhjhk 

j . k = l  

3 
+[(2rci)a/3!] ~ 3Kjk~hjhkh~} (12) 

j , k , l= l  

where h is the vector of Miller indices and f(h) is the 
atomic scattering factor. 

The vector llt is explicitly the 'libration correction', 
and is given by 
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3 

'/2,= ~ [B(r),,kL~k 
/ , k = t  

3 

-t- E D(r)Ok'm(LjkLt"-k Lj,LRm + Lj,,,Lg,)] 
l,m=l 

3 
+(O/2r'Z)[R'~+ ~ B(R')~jkLjk]-(R~O2/8r'Z). (13) 

j.k=~ 

In the case of a rigid body undergoing isotropic libra- 
tion Ln  = Laz = La3 = L and L,a = L~3 = L23 = 0. so that 
equation (13) reduces to 

*/zt = r , [ -  L + (~)L21, (I 4) 

in agreement with the result of Willis & Pawley (1970). 
Making use of relations (8), (9), (10), and (11) we can 

write expressions for the second and third cumulants 
and their derivatives with respect to L,j and O. They are 

3 3 

2tCiJ= E E [A(r)ikA(r).n+(O/r'2) (A(R)ikA(R)j ,  
k = l  / = 1  

+ B(R),uRj + B(R)~,R,) 

+ (O/2r '2) (A(r)~A(R')jl + A(R'),kA(r)j~)]Lki 
3 3 3 3 

+ ~ ~ ~ ~[A(r)~(C(r)jtm,,+C(r)j.,t,, 
k=ll=lm=ln=l 

q- C(r)intm) + A(r)~k(C(r).,.,, + C(r)..t,, + C(r)l.t,.) 

+ B(r),kmB(r)j~. + B(r),k.B(r)jtm]Lk~L=,, 
+(OR,Rj/r 'z) (1--O)-OZR~Rj/4r'4+ T~ i . (15) 

a(%j) 
8Lkt 

where JkZ 

6~(2K'ij) 
~o 

- -  - ~A(r).,A(r).n + A(r)~gA(r)u 

+ (O/r'Z)[( { A(r)ikA(R')j, + A(R')u,A(r).n 

+ A(r)i,A(R')ak + A(R')itA(r)jk) 

+ A(R)~kA(R)j~ + A(R)uA(R)jk + R,(B(R)jk~ 

+ B(R)j,k) + Rj(B(R),k, + B(R),tk)] 
3 3 

+ 2 Z ~. Lm.[A(r),k(C(r)it=. + C(r)j.a,. 
m=l n=l 

+ C(r)i.zm)+ A(r)jk(C(r)tzm. + C(r)i.a. 

+ C(r)intm).-¢- A(r)it(C(r)jkm n + C(r)jme,, 

+ C(r)a.km) + A (r)ak(C(r)~km. + C(r),.,k. 

+ C(r)~,,k.,) + B(r),k,,,B(r)jz. + B(r)g~,,B(r)j.,, 

+ B(r).mB(r)jk,, + B(r).,,B(r)jj,.,]}/(1 + Jkt). (16) 

= 1 if k--  l and 0 otherwise. 

- (1/r'Z){ - 20(RgRj + R~ Rj/4r '2) + R,Rj 
3 3 

+ ~ E Lkl[A(R),kA(R)jI 
k = l  l = l  

+½- (A(r),kA(R')jt + A(R')tkA(r)j,) 

+ B(R)lk,Rj + B(R)jk,Ri]}. (17) 

3 3 3 3 

3tCijk=2 ~ ~. ~ ~ L,,.L.p(A(r),,A(r)j,,B(r)k.., 
l = 1  m = l  n = l  p = l  

+ a(r)j,A(r)k.B(r)im. 
+ A(r)~,A(r),.B(r)j,,,.) 

3 3 
+o/' .  '~ ~, ~ k,,,,[g,(a(R).,a(r)~,,, 

I = 1  m = l  

+ A(r)j,A(R)gm) + Rj(A(R)uA(r)k,,, 

+ A(r)uA(R)km 

+ Rg(A(R),IA(r)j., + A (r).A (R)j.,)]. (18) 

C~-(3~jk) = {(O/r'2)[R,(A(R)j,A(r)km + A(r)jtA(R)k., 
c° L u,, 

+ A(R)j,.A(r)k~ + A(r)jmA(R)k,) 

+ Rj(A(R)aA(r)km + A(r)uA(R)km 

+ A(R).,,A(r)k, + A(r)~mA(R)k,) 

+ Rk(A(R).A(r)jm + A(r).A (R)j., 

+ A(R)gmA(r)jt + A(r),mA(R)jt)] 
3 3 

+ 4  ~ ~ L,u,(A(r)l,A(r)j,,B(r)kmp 
n = l p = l  

+ A(r)j,A(r)k.B(r).,,p + A(r)k,A(r)i,,B(r).mp 

+ A(r).,,A(r)j.B(r)kt. + A(r)j.,A(r)k,,B(r)m, 

+ A(r)k.,A(r).,B(r).m,)}/(1 +J.,,). (19) 

8(3Kijk) 
ao  =(1/'.':) L,,,,tRi(A(R),,A(r)k,,, 

/ = I  m = l  

+ A(r)~,A(R)k,,,) + Rj(A (R).A (r)km 
+ A (r)uA (R)R.,)+ Rk(A(R)uA(r)j., 

+ A(r).A(R).i.,)] 

+(2o/,.'") (R;R~R~+ R,RjR~ + RiRjR;,) (20) 

Applicat ion to least -squares  ref inement 

The expressions derived above can be used in a least- 
squares refinement procedure in order to enable the 
rigid body motion parameters, Lij, Tij, and O to be 
used in place of the independent thermal parameters. 
Following this procedure greatly reduces the number 
of refined parameters, and it also allows the use of 
third cumulants in the refinement without any increase 
in the number of parameters. In addition, for struc- 
tures where the constraints represent a reasonable 
physical model, a comparison of constrained and un- 
constrained refinements, employing statistical methods 
such as the R-index ratio test (Hamilton, 1965), can be 
used to judge the adequacy of the model. For this pur- 
pose we have modified the program RFINE (Finger, 
1968, available on request) to follow this procedure. 

Because the previous formulae are derived assuming 
an orthonormal coordinate system, it is necessary to 
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make the appropriate transformations between that 
system and the one defined by the crystal axes. For this 
purpose a subroutine is called once at the beginning of 
a computer run to derive the transformations to con- 
vert a vector from the crystal system to the ortho- 
normal system and to convert the second and third 
cumulant tensors from the orthonormal system back 
to the crystal system. The derivatives of the anisotropic 
temperature factors, fl~j, with respect to the elements 
of the translation tensor, Tg~, are dependent only on 
crystal geometry, and these are therefore also com- 
puted at this time. Another subroutine is called at the 
beginning of the run and again at the end of each cycle 
of refinement. Its function is to convert all atom par- 
ameters to the orthonormal system, apply the libration 
correction appropriate to the current values of Lt~ and 
O, compute the second and third cumulant coefficients 
and their derivatives, and transform them back to the 
crystal system. The derivative information is used by 
the subroutine which sets up the least-squares normal 
matrix equation to determine for each reflection the 
derivatives of the structure factor, F, with respect to 
each of the thermal motion parameters. 

In practice we have found (Prince, Schroeder & 
Rush, 1973) that using zero as the starting value for the 
rigid-body thermal parameters is such a bad approx- 
imation that the structure will not refine if all param- 
eters are allowed to vary simultaneously. However, if 
the position parameters, the scale factor, and the ex- 
tinction parameter are first determined by means of a 
conventional refinement with anisotropic temperature 
factors, and these are then held fixed while the rigid- 
body motion parameters are refined, the motion par- 
ameters quickly converge to reasonable values. After 
this has happened the position, scale, and extinction 
parameters can also be allowed to vary, and the refine- 
ment will proceed smoothly to a stable minimum. 

The expressions used in this procedure neglect 
atomic motions due to internal modes of oscillation 
other than the librational motion of the side group. 
The effect of the neglect of internal modes will be to 
distort the molecular motion parameters somewhat, 
as the least-squares process attempts to fit the overall 
motion with the available parameters. In particular we 

have neglected those internal modes that correspond 
to 'wagging' of the side group with respect to the core 
of the molecule. For this reason the applicability of 
this method is restricted to cases in which the ampli- 
tudes of these motions are much smaller than the am- 
plitude of the libration around the bond. Neglect of 
these internal modes will tend to exaggerate somewhat 
the motions of the core atoms, and underestimate the 
motions of side group atoms that are treated as part 
of the rigid core. The model should be most appro- 
priate for light side groups, such as methyl groups or 
amino groups, attached to a much heavier core. 

We should like to thank Dr C. K. Johnson for several 
stimulating discussions. 
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